

OpenComRTOS breaks new grounds in the field of Real-Time Operating Systems. From the start it was
developed as a scalable communication layer to support multi-processor systems but runs equally well on a
single processor. It supports small microcontrollers and multi-core chips with little memory but runs as well
on widely distributed systems. Furthermore, it was from the ground up developed using formal modeling.

While the first approach was inspired by a Virtual
Single Processor programming model, the formal
approach was instrumental not only in achieving a
trustworthy component, but also in achieving unpar-
alleled performance with a very clean and portable
architecture. An additional benefit of the unique ar-
chitectural approach is that the RTOS kernel can be
multiplied on the same processing node, e.g. to pro-
vide monitoring and supervision functions for safety
critical applications.
OpenComRTOS provides similar kernel services as
most RTOS, such as starting and stopping tasks,
priority based preemptive scheduling with support for
priority inheritance, Events, Semaphores, FIFOs,
Ports, Hubs, Resources and Memory Pools. Generic
Packet allocation/deallocation and Tasks sending/
receiving such Packets using intermediate Ports for
synchronisation and communication is the basis for
small systems. Entirely written in ANSI-C (MISRA

checked), except for the context switch, OpenComRTOS can be stripped down
to about 1 KB in a single processor code size optimised implementation and 2
KB in a multi-processor implementation. The data memory requirements can be
as low as 18 Bytes + 64 Bytes per task, depending on the target processor. All
services can be called in blocking, non-blocking, blocking with time-out and
asynchronous mode (when appropriate for the service). The kernel itself as well
as the drivers are also tasks, increasing the modularity and reducing the critical
sections. From the RTOS point of view the kernel essentially shuffles Packets
around, while for the application the Hubs play the dominant role. Packets are
sent to a Hub where they synchronise with requests from other tasks (or vice
versa). If no request is available, the Packets are put in a priority sorted waiting
queue. By design, such buffers cannot overflow. Another interesting feature of
the Hub is that it allows the user to create his own application specific services
independently of the RTOS.
Simulation is very important, therefore the initial kernel was developed on top of
Microsoft Windows. While this simulator provides for logically correct operations,
it allows integrating existing host operating systems or existing RTOS with the
nodes running OpenComRTOS. A simple serial connection can be sufficient to
establish communication. A port to Linux is available as well (in conjunction with
OpenVE. Tracer supports to analyze task scheduling and inter-node interaction.

OpenComRTOS:
a Scalable and Open Network-Centric RTOS for Embedded Applications

Developed using formal modeling, the perfect RTOS for deeply embedded and distributed systems

info.request@Altreonic.com

www.Altreonic.com

Altreonic NV

Gemeentestraat 61A b1
B3210 Linden, Belgium
Tel. +32 16 202059

OpenComRTOS services have been designed as
the basic functions which are needed in embedded
applications. While already rich in semantic beha-
viour, more elaborate and specialised services can
be added using the generic Hub. The architecture
allows supporting other RTOS API as well. Open-
ComRTOS also supports heterogenuous target
systems allowing to mix 8bit, 16bit and 32bit pro-
cessors or even host nodes running a tradional OS.
To reduce code and memory requirements, the
code is statically linked with most datastructures
being generated at compile time. The developer
specifies his topology and application graphically or
edits directly the configuration.

One of the first customers of OpenComRTOS is
Melexis, a leading supplier of semiconductor chips
for automotive and consumer markets. The latest
range of products, called the MelexCM, features a
dual-core CPU with up to 32 KBytes of on-chip pro-
gram flash memory and just 2KBytes of on-chip
data memory, an area that most RTOS can’t even
reach.

The application domain for OpenComRTOS is
wide. As a trustworthy component, it forms a good
basis for developing applications that need safety
and security support but have only scarce proces-
sing and memory resources. High performance,
communication intensive applications will benefit
from its very low memory requirements and trans-
parent support for multi-processor applications. A
natural candidate are FPGA based systems used in
high band-width DSP applications. Sensor net-
works is another promising application domain.
Furthermore, OpenComRTOS addresses the mar-
ket of embedded chips that increasingly use multi-
core CPUs for higher performance and lower po-
wer consumption. In all these systems, zero-wait
state memory is a scarce resource. The perfor-
mance benefits of using OpenComRTOS come
from its low latency communication as well as from
its low memory requirements. At the other end of
the spectrum, OpenComRTOS can be used as a
thin communication layer that connects heteroge-
neous systems together.

OpenComRTOS is bundled with an open Visual
Development Environment under a binary as well
as under a unique Open License that leaves no
surprises. The latter includes source code and all
design documents. A kernel porting kit allows port-
ing to new targets.

OpenComRTOS is not just another RTOS. It rein-
vents the very concept. For the first time it combi-
nes trustworthiness with small code size, perfor-
mance and ease of use, even for distributed appli-
cations. OpenComRTOS is a concurrent program-
ming paradigm that was designed to be used.

info.request@Altreonic.com

www.Altreonic.comwww.Altreonic.comwww.Altreonic.comwww.Altreonic.com

Available OpenComRTOS -services:

L1_Start/Stop/Suspend/ResumeTask
L1_SetPriority
L1_SendTo/ReceiveFromHub
L1_Raise/TestForEvent
L1_Signal/TestSemaphore
L1_Send/ReceivePacket
L1_Send/ReceiveDataPacket
L1_Enqueue/DequeueFifo
L1_Lock/UnlockResource
L1_Allocate/DeallocatePacket
L1_Get/ReleaseMemoryBlock
L1_MoveData
L1_SetEventTimerList
…
_(N)W(T)_Async: non-blocking, blocking, block-
ing with timeout, asynchronous.

Key size figures:

Code size on Melexis 16bit MLX16X8: 996 Bytes
(optimised implementation)

Static data size: 18 Bytes (minimum)*
Dynamic datasize: typically < 64 Bytes/Task

Other code size figures:

Minimum RTOS with Port
SP small: 996 Bytes
MP full: 3150 Bytes
L1 with hub, Port, Event, Semaphore, Resource, Fifo:
 SP small: 2104 Bytes
 MP full: 4532 Bytes

Performance data:

Measured on a 27 MHz (6.5 Mips) MLX16X8:

Send-Receive loop between two tasks and
 using two ports: 93 us
Interrupt latency in ISR: 4 us.
Interrupt latency to task: 52 us.

*: total data requirements depend on application.

Other ports: Atmel AVR, Xilinx MicroBlaze,
 LEON32, ARM, ...

